UNIVERSITY OF HORTICULTURAL SCIENCES, BAGALKOT, KARNATAKA # SELF STUDY REPORT FOR THE Ph.D. IN PLANT BIOTECHNOLOGY COH, BENGALURU, 2014-15 to 2018-19 #### **SUBMITTED TO** Indian Council of Agricultural Research, Krishi Bhavan, New Delhi. #### **SUBMITTED BY** University of Horticultural Sciences, Udyanagiri, Bagalkot – 587 104 Karnataka #### **PREFACE** Horticulture - a science of production and management of plants for food, comfort, feed, recreation, and beauty – is potentially vital in raising agricultural production, value addition, farm income and employment in the country. In the context of hazards like climate change, scarcity of water, labour problem etc., Horticulture is contributing incessantly in planning sustainable development goals. After UN General Assembly Summit held on January 1st of 2016, India has adopted 17 SDGs and 169 targets to strengthen health and economy of the nation. Modern era of digitalization has introduced new perspectives like digital horticulture, precision farming, climate smart farming, and nutritional security into the prospectus of horticulture. Karnataka was the first state in the country to recognize the potential of horticulture sector to bring prosperity to the farmers. To increase the focus on the sector, the state took the lead and created the country's first Horticulture Department and other states followed the example of Karnataka. Presently Karnataka is placed second in horticulture performance in the entire country and the state received 'Best State in Horticulture' award in 2015. Karnataka is the highest exporter of cashew, roses, gherkins, rose onions, spices and condiments. The state has achieved remarkable progress in many fronts from production to storage, packaging and marketing of fruits, vegetables, flowers and plantation crops. The horticulture sector, which includes a wide variety of crops such as fruits, vegetables, spices, plantation crops, floriculture, medicinal and aromatic plants etc., is recognized as an important sector for potential diversification and value addition for the sustainability of the farmers. It has been recognized that growing horticulture crops is now an ideal option to improve livelihood security; enhance employment generation; attain income and food security; and increase income through value addition. After its establishment in 2008, University of Horticultural Sciences, Bagalkot established RHREC in a newly transferred land of 125 acres at its campus in Bengaluru in the year 2010 and in the year 2011 Post Graduation Centre was established. Initially the campus was called as Post Graduation Centre but with the commencement of Bachelor's degree programme and two year diploma course in the year 2014, it was re-christened as College of Horticulture. The college is striving hard to impart quality education in terms of theory, research and extension. The college is gathering laurels through the performance of teachers as well as the students. The college has an excellent track record in both academicals and co-curricular activities. ICAR, through an accreditation procedure of its own is assessing facilities available and to improve the quality of education rendered by the college. After accreditation, by the financial support of ICAR and State Government, the growth and developmental activities of the college will be improved further to a greater extent. Since the college is due for accreditation by ICAR the present report provides all the necessary information about the college activities performed during last five years. The University level task force and steering committee is gratefully acknowledged for the help, guidance and suggestions given in preparing the report. The College level steering committee and task force have done a great job in compiling information and bringing out this report to be submitted to Accreditation Board of ICAR. I gratefully thank all those who have helped in preparing this report. > (VISHNUVARDHANA) College of Horticulture, Bengaluru ### CONTENTS | Sl. No. | Title | Page No. | |---------|---|----------| | 6.4.1 | Brief History of the Degree Programme | 1 | | 6.4.2 | Faculty Strength | 6 | | 6.4.3 | Technical and Supporting Staff | 6 | | 6.4.4 | Classrooms and Laboratories | 6 | | 6.4.5 | Conduct of Practical and Hands-on-Training | 11 | | 6.4.6 | Supervision of students in PG / Ph.D. programmes | 13 | | 6.4.7 | Feedback of stakeholders (Students, parents, industries, employers, farmers etc.) | 14 | | 6.4.8 | Student intake and attrition in the programme for last five years | 15 | | 6.4.9 | ICT Application and Curricula Delivery | 16 | | 6.4.12 | Certificate | 17 | #### **6.4.1. BRIEF HISTORY OF THE DEGREE PROGRAMME:** A diverse agro-climatic condition prevailing in Karnataka facilitates growth of a large variety of horticultural crops including fruits, vegetables, flowers, spices, plantation, root and tuber crops, aromatics crops, medicinal crops, oil palm etc. Besides the essentiality of these crops, now-a-days the utility vistas of horticultural commodities are getting diversified with the new scientific and technological advancements in related disciplines. The liberal economic policy regime of the country and advancements in related scientific disciplines have carved niche of new opportunities, which has resulted in a need to improve the productivity of horticulture crops and impart new consumer traits to make them further attractive both to the industry and food sectors. Advancements in molecular biology and platform technologies including next generation breeding approaches and genetic engineering have opened new opportunities in improvement of the vegetable crops, plantation crops, flower crops, fruit crops, medicinal crops for yield, resistance to biotic and abiotic stresses and industrial requirement. Many horticulture crops are being considered for whole genome sequencing in recent years and large-scale genomic resources are getting accumulated in public databases. Advanced tools in the plant breeding and biotechnology and increasing finding their relevance in improvement of horticulture crops in recent years. Hence, establishment of a Post-Graduation degree programme in covering Plant Biotechnology, Genetics & Plant Breeding, Seed Science & Technology, Crop Physiology and Biochemistry disciplines, in the name of 'Biotechnology and Crop Improvement' was started at then Post Graduate Centre, UHS campus, GKVK post, Bengaluru of University of Horticultural Sciences, Bagalkot with a primary aim of training the students and meeting the trained man power requirement in the sector for horticulture biotechnology and crop improvement and applications of cutting edge molecular biology and biotechnology tools in horticulture. With this objective, and available faculty and infrastructure in the department of Biotechnology and Crop Improvement the master degree programme was started during the academic year 2013-14 with admission of four students at College of Horticulture Bengaluru. Immediate next year, in 2014-15 with well-established molecular biology laboratories and other essential facilities as part of Center for Biotechnology Research (CBR), funded by Department of Information Technology, Biotechnology and Science and Technology (IT, BT and S&T) of Government of Karnataka both at COH, Bengaluru and UHS Bagalkot campuses, the doctoral programme in the discipline of 'Biotechnology and Crop Improvement;' was started during the year 2014-15, at College of Horticulture, Bengaluru with an initial intake of three students. Further, during 2017-18 the Academic Council of University of Horticulture Sciences, Bagalkot changed the nomenclature of degree programme as 'Plant Biotechnology' and 'Genetics and Plant Breeding' – two separate degree programmes both at Master's and Doctoral level to fall in line with the ICAR Dean's Committee recommendation and ICAR nomenclature Committee. At present, the following Ph.D.degree programs have been offered at Department of Biotechnology and crop improvement: - 1. Ph.D. (Plant Biotechnology) - 2. Ph.D. (Genetics and Plant Breeding) Both curricula and guidelines are completely as per the ICAR guidelines recommended by Vth deans committee. #### Vision "Our responsibility is to continually improve overall learning and professionalism of the students through imparting quality education and training in the disciplines of Biotechnology and Crop Improvement for a challenging tomorrow so as to serve the agri- horticulture sector in particular and society at large and be valuable assets to the nation. Our vision is to evolve creativity in research and education base with a focus to do a larger good to the society and nation" #### **Mandates** - To impart quality postgraduate education in the disciplines of Molecular Biology, Plant Biotechnology, Genetics &Plant Breeding, Biochemistry and Crop Physiology. - To develop skilled manpower required to various stakeholders including Biotechnology and Plant Breeding intensive industries besides others. - To undertake need based strategic and applied research by the faculty in Molecular Biology and Biotechnology, Genetics and Plant Breeding. - To develop transgenic crops, varieties and hybrids for immediate needs of the farmers and horticultural industries. - To facilitate transfer of technology to the industry and other stakeholders through continuous trainings #### **Objectives** - 1. Teach, train and graduate qualified skilled scientists in the disciplines of Plant Biotechnology - 2. Develop, implement and evaluate the curriculum of Plant Biotechnology programme with a strong commitment to be aligned and comply with the national and international standards - 3. Conduct applied research in basic and translational biotechnology and fosters interactions and collaboration between faculty, researchers and industry. - 4. Promote a supportive learning environment for life through implementing continuous learning programmes. - 5. Apply the general principles and standards of technology transfer and ensure adequate training of our personnel in modern biotechnology and plant breeding. #### **Accomplishments:** ### 1. Ph.D. student's research outcomes which are helpful for the farming community and further research: | Sl.No. | Year | Student name | Research Outcome | | |--------|---------|----------------------|---|---------------| | | Doctor | ral students | Thesis title | Remarks | | 1 | 2014-15 | Gaurav N. Chaudhari | QTLomics and expression analysis of
candidate genes of ToLCV resistance and
selected fruit quality traits and Marker
Assisted Breeding in tomato | Completed | | 2 | 2014-15 | Mohan Chavan | Molecular mapping for vegetability governing traits in soybean | Pursuing | | 3 | 2014-15 | Arti Karosiya | Ascertaining the genetic genuineness of NRB rasathalli AAB through molecular, morphological and nutraceutical aspects | Pursuing | | 4 | 2015-16 | Archana, V. Hullatti | Genome editing in tomato to understand the genetic architecture | Joined job | | 5 | 2015-16 | Dheemanth, T. L. | Evaluation of important commercial hybrids and their double cross hybrids in tomato for bacterial wilt and ToLCV | Pursuing | | 6 | 2015-16 | Md Samiyoddin | Genetic plasticity for drought tolerance traits in tomato germplasm | Joined as ADH | | 7 | 2016-17 | Nayana R.S. | Development an characterization
multiparent advanced generation intercross
population for mapping QTL governing
ToLCV resistance | Pursuing | | 8 | 2016-17 | Mamathashree M.N. | Population genetic structure and phytogeography of tamarind Pu | | | 9 | 2016-17 | Asif Hadimani | Association mapping and heterosis for salt tolerance in tomato | Pursuing | | 10 | 2016-17 | Sandeep Kadam | Genome-wide association study and expression analysis of selected candidate | Pursuing | | Sl.No. | Year | Student name | Research Outcome | | |--------|---------|----------------|--|----------| | | | | genes for fruit quality traits in tomato | | | 11 | 2017-18 | Prakash G. | Genetic analysis for yield and quality traits in okra | Pursuing | | 12 | 2017-18 | Sudhakar Reddy | Genetic analysis of advanced mutant populations of cluster bean | Pursuing | | 13 | 2017-18 | Mahesh kumar D | Genome-wide association mapping and prospecting heterosis for fruit yield and its component traits in tomato | Pursuing | | 14 | 2017-18 | Anurag Gowda | Comparative evaluation of genetic variability derived through recombination and mutation in water melon and isolation of desirable mutants | Pursuing | | 15 | 2018-19 | Rashmi | Student admitted during 2018-19 | Pursuing | #### 2. P.G. student's research topics linked with staff research projects: - Expressional analysis of microRNAs and their cognate genes in tomato and Arabidopsis thaliana - > Genomics assisted breeding of tomato for resistant to diseases and yield - > Development of functional mutants and expressional analysis selected transcriptional factor genes and R gene/RGAs in french bean - > Genetic diversity and improvement of cluster bean - > Breeding for vegetable type pigeon pea - Breeding for vegetable type soybean - ➤ Genetic diversity and improvement for samber onion - Comparative in silico analysis of microRNA and RGAs in tomato/Arabidopsis - > Structural and functional analysis of genomic regions conferring leaf curl virus (ToLCV) in tomato - ➤ Genetic and molecular characterization of ecotypes/landraces groups of brinjal prevailing in Karnataka - > Genetic diversity and improvement of muskmelon for yield, disease resistance and quality traits - ➤ Genetic improvement of okra for yield and diseases - Physiological studies in mango for drought tolerance - > Physiological investigations in cluster bean for drought tolerance traits - Understanding the biochemical basis of fruit quality traits in tomato and legume vegetables crops - ➤ Metabolomic analysis of selected horticulture crops - > Development of protocols for induction of haploids in selected horticulture crops ## 3. External funded projects in the Department of Biotechnology and Crop Improvement - ➤ Centre for horticulture biotechnology, funded by RKVY, GoK - Molecular breeding for leaf curl disease resistance caused by tomato leaf curl virus (ToLCV) in tomato(Part of IT,BT and S&T, funded CBR project) - Establishment of a field gene bank for Garcinia indica and Garcinia cambogea ecotypes of Western Ghats and their characterization for (-) –Hydroxy citric acid [(-)-HCA] and genetic diversity (Part of IT,BT and S&T, funded CBR project) - > Development of certification protocols for planting materials of Horticultural origin (RKVY, GoK funded) - > VGST funded project funded by GoK - > Development of certification protocols for planting material of horticulture origin (Funded by RKVY, GOK) 4. P.G research publications: | Particulars | Research papers published in > 4 NAAS ratings | Research papers published in <4 NAAS ratings | |--------------------------------|---|--| | PG students paper publications | 17 | 5 | #### 5. No. of M. Sc. and Ph.D. (Hort.) in Biotechnology & Crop Improvement #### (1) Plant Biotechnology; (2) Genetics and Plant Breeding] students qualified in NET: | Sl.
No | Year | Number of NET qualified students | |-----------|-------|----------------------------------| | 1 | 2015 | 5 | | 2 | 2016 | 1 | | 3 | 2017 | 4 | | | TOTAL | 10 | #### **6.4.2. FACULTY STRENGTH** #### **Faculty strength** | Sl.
No. | Cadre | Sanctioned strength | Faculty in place | Vacant position | Faculty recommended by ICAR | Deviations from ICAR recommendations | |------------|------------------------|---------------------|------------------|---------------------|-----------------------------|--------------------------------------| | 1 | Professor | 1 | 1 | - | 1 | - | | 2 | Associate
Professor | 1 | 0 | 1 | 1 | 1 | | 3 | Assistant
Professor | 6 | 4 | 1 | 4 | 1 | | | Faculty from | the College of | f Horticult | ure, Mysui
Kolar | ru and the Colleg | ge of Horticulture, | | 4 | Dean COH
Kolar | - | 1 | - | - | - | | 5 | Associate
Professor | - | 2 | - | - | - | | 6 | Assistant
Professor | - | 2 | - | - | - | Along with sanctioned strength, teachers based on deputation from neighbouring campus are being engaged for teaching and guiding the students. #### 6.4.3. TECHNICAL AND SUPPORTING STAFF | Sl.
| Designation | Sanctioned strength | Faculty in place | Vacant position | Faculty recommende d by ICAR | Deviations from ICAR recommendations | |----------|-------------------------|---------------------|------------------------------|-----------------|------------------------------|--------------------------------------| | 1. | Laboratory
Assistant | 01 | 01 | 0 | - | - | | 2. | Field assistant | 01 | 01 | 0 | - | - | | 3 | Project assistant | 01 | 01
(contractual
basis) | 0 | - | - | #### 6.4.4. CLASS ROOMS AND LABORATORIES #### **Class rooms** | Sl.
No. | Class room No. | Area | Seating capacity | Other facilities
(LED, projector,
Computer, etc.) | |------------|---|------------------|------------------|---| | 1 | Class room No. 1 | 7m x 7m | 60 students | Projector, computer and LED TV, smart board | | 2 | Class room No. 2
Instruction cum
laboratory | 13.5m x 7.5
m | 60 students | Projector, board, and laboratory facilities | | 3 | Class room for PhD students | 8m x 7 m | 10 students | Projector, book projector, board, computer | | 4 | Field Laboratory | 15m x 8m | 25 students | Black board, benches and dissection instruments | #### Laboratories and facilities | Sl.
No. | Name of the laboratory | Area | Seating capacity | |------------|--|----------------|------------------| | 1 | Centre for Biotechnology Research | 18.5m x 12.5 m | 30 | | | with state-of-the-art facilites | | | | | 1 DNA isolation area | 3.5m x 10 m | | | | 2 PCR workstation | 2m x 1.5m | | | | 3 PCR (Thermocycler) area | 15m x 10m | | | | 4 Gel electrophoresis area | 4m x 6m | | | | 5 Bioinformatics facility | 2.5m x 2.2m | | | 2 | Common laboratory for conducting UG | 20m x 15 m | 60 | | | and PG practical | | | | 3 | Tissue culture laboratory | 25 x 20 m | 40 | | 4 | Field laboratory | 15 x 10 m | 20 | | 5 | Breeding cages – 3 nos | 15 x 10 m | | | 6 | Transgenic containment facility | 15 x 12 m | 20 | #### **Major equipments** | Sl.
No. | Instrument list | Quantity | Cost
(Rs. In Lakhs) | Working condition | |------------|--|----------|------------------------|-------------------| | 1 | Deep freezer (-80oC), | 2 | 12.00 | Good | | 2 | Freezer (-20oC) | 2 | 2.50 | Good | | 3 | Thermal cyclers | 3 | 18.00 | Good | | 4 | Centrifuge (with cooling) | 5 | 6. 75 | Good | | 5 | Spectrophotometer | 1 | 2.00 | Good | | 6 | Thermal cycler (gradient) | 1 | 6.00 | Good | | 7 | High speed computing systems | 1 | 6.5.00 | Good | | 8 | Gel documentation system with software | 1 | 5.00 | Good | | 9 | Nucleic acid hybridization oven | 1 | 4.00 | Good | | 10 | Vertical electrophoresis systems | 1 | 6.00 | Good | | 11 | Laminar air flow | 4 | 7.00 | Good | | 12 | Tissue maceration system | 1 | 5.00 | Good | | 13 | Quantitative RT-PCR with HRM function | 1 | 6.00 | Good | | 14 | Autoclave | 2 | 1.00 | Good | | 15 | Precision dry bath | 6 | 4.00 | Good | | 16 | Incubation shaker precision | 1 | 6.00 | Good | | 17 | Eye wash system | 1 | 0.47 | Good | | 18 | Hot air oven | 1 | 0.80 | Good | | 19 | Refrigerator | 4 | 1.80 | Good | | 20 | Precision oven for oven ISH | 1 | 0.60 | Good | | 21 | Western blotting unit | 1 | 0.90 | Good | | 22 | Electroporator | 1 | 1.10 | Good | | Sl.
No. | Instrument list | Quantity | Cost (Rs. In Lakhs) | Working condition | |------------|--|----------|---------------------|-------------------| | 23 | Open top aqua shaker for silver staining | 1 | 0.10 | Good | | 24 | Deep well plate rotor | 1 | 0.80 | Good | | 25 | Northern blotting unit | 1 | 0.90 | Good | | 26 | Heat sealer | 1 | 0.40 | Good | | 27 | pH meters | 2 | 1.00 | Good | | 28 | Vertical gel electrophoresis system | 1 | 6.50 | Good | | 29 | QIAexcel advanced | 1 | 14.92 | Good | | 30 | Nanodrop | 1 | 4.50 | Good | | 31 | Growth chamber | 1 | 0.80 | Good | | 32 | Humidity system | 1 | 0.80 | Good | | 33 | Arabidopsis growth chamber, chemical store and computing place | Unit | 4.50 | Good | | 34 | Microscopes | 5 | 1.50 | Good | | 35 | Hula mixer | 1 | 0.80 | Good | | 36 | Speed Vac | 1 | 4.50 | Good | | 37 | Micro centrifuges | 1 | 1.80 | Good | | 38 | Transgenic containment facility | 1 | 14.00 | Good | | 39 | Breeding cages | 3 | 34.00 | Good | | 40 | Viral containment facility | 1 | 1.50 | Good | (Miscellaneous: Filing cabinet steel, Lab stools, Office table, Office executive chairs, almera steel, Glass door Almeria, Wooden stools teak wood, computer, HCL, printer 2 h p 1020 LESER, Noticeboard, classroom bench, Lab table modern fixed with reagent racks, Glass block board(6X4)(8x4,Wooden key board with 12 locks, Air conditioner LG Dell, Lenovo desktops, Fire extinguisher, First aid box, Acid storage unit, Barcode generator, essential equipment for field operation, Steel trolley). Molecular biology laboratory with required instruments and facilities #### Farm facilities | Sl.
No. | Name of | the Department | Farm Area | Irrigated /
Non-
irrigated | Crops grown | |------------|----------------|--|-----------|----------------------------------|--| | 1 | Civil facility | Transgenic containment and bio safety facility (1) | 4 Gunta | Irrigated | Seedlings of Garcinia | | 2 |] | Breeding cage (3) | 6 Gunta | Irrigated | tomato, brinjal | | 3 | | Polyhouseand net house | 3.5Gunta | Irrigated | Garcinia grafts, vegetable soybean | | 4 |] | Viral containment | 2Gunta | | Whitefly culture | | 5 | Open land | | 1.5 acre | Irrigated | tomato, pigeon pea,
Garcinia, shallots,
vegetable soybean,
cluster bean, french
bean | BCI field facility block Transgenic containment, nethouse Viral containment, polyhouse facilities Breeding cages (3) Transgenic containment Field Laboratory **P.G. research facility availability:**Research facilities including experimental field blocks with irrigation facility have been developed for the field experiments. The breeding cages and transgenic containment facilities are being used for contained evaluations and crossing work by the students. The facilities such field gene bank of Garcinia species, instructional orchards of major fruits crops and flower crops present in the campus are being used by the student s. Further, inputs like seeds, fertilizers, irrigation, pesticides etc. and workforce required for conducting PG research are facilitated from the Department. #### Workshops, if any | Sl.No | Title | Place | Date | Sponsored by | Organizer/
Associate | |-------|--|-------------------|---------------------|--------------------------------------|-------------------------| | 1 | One day awareness
workshop on 'Guidelines
for access to biological
resources under the
biological diversity Act
2002' | COH,
Bengaluru | 24th March,
2017 | IT,BT and
S&T, Govt.
Karnataka | State Level | # 6.4.5. CONDUCT OF PRACTICAL AND HANDS ON TRAINING FOR THE STUDENTS: In order to import domain expertise and hands-on experience in plant biotechnology discipline, students are practically trained in following areas: - 1) Plant Biotechnology - 2) Molecular Biology - 3) Plant Breeding And Genetics - 4) Tissue Culture - 5) Immunology And Immunological Techniques - 6) Biochemical Techniques And Procedures - 7) Bioinformatics And In Silico Tools Further, students are also trained in the following disciplines through structured course work related practicals: | Sl.No. | Course | Courses with practical component | Skills / Method of Hands on training | |--------|-------------------------------------|----------------------------------|---| | | For Do | octoral degree pro | ogramme | | 1 | Advances in plant molecular biology | PBT601 (2+1) | Isolation and Expression analysis of Promoter and regulatory elements; Virus Induced Gene Silencing as a Post transcriptional gene silencing mechanism in plants, Total RNA isolation and cDNA synthesis, gene expression analysis; RT-PCR and qRT-PCR, Tissue specific gene expression profiling, Characterization of in vivo DNA-Binding events of plant transcription factors, Identification of direct targets of plant transcription factors, in vitro protein-protein interaction analysis for detection of hormone signaling, plant-pathogen interactions and abiotic stress, Constructing Simple Biological Networks for Understanding Complex High-Throughput Data in Plants | | Sl.No. | Course | Courses with practical component | Skills / Method of Hands on training | |--------|---------------------------------|----------------------------------|---| | 2 | Advances in genetic engineering | PBT 602 (2+1) | Plant gene expression vector engineering and codon optimization, Genetic transformation of important Horticultural crops using Agrobacterium mediated and biolistic gun transformation, Conformation and validation of putative transformants by selectable marker genes and reporter genes, PCR, blotting techniques and bioassays, transgene copy number detection, Selection of Transgenic Plants Using a Herbicides, Characterization of transgenes using a heterologous full-length cDNA expression system, Regulations for growing of transgenic crops under green house and field, targeted plant genome editing via the CRISPR/Cas9technology. | #### Conduct of practical and hands-on training for staff under ICAR | | ı | | | | |-----------|---------------------------|--|--|-------------------| | Sl.
No | Date | Course
coordinator/Associate
course coordinator | Title/Topic | Place | | 1 | 1-21st July
2016 | Prof. B. Fakrudin (Director) Dr. G.K.Halesh (Asst.Prof) Dr. Mohan Kumar (Asst.Prof) | Exploring Genomic Resources for
the Improvement of Horticultural
Crops | COH,
Bengaluru | | 2 | 5-25th July 2017 | Prof. B. Fakrudin(Director) Dr. G.K.Halesh (Asst. Prof) Dr. Mohan Kumar (Asst.Prof) | Experimental Approaches in Utilization of Genomic Resources for the Improvement of Horticultural Crops | COH,
Bengaluru | | 3 | 4-24th
January
2018 | Prof. B. Fakrudin (Director) Dr. G.K.Halesh (Asst. Prof) Dr. R.K.Ramchandra(Asst.Prof) | Recent Development in Conservation and Characterization of Horticulture Plant Genetic Resources | COH,
Bengaluru | | 4 | 1-21st
August
2018 | Prof. B. Fakrudin (Director) Dr. G.K.Halesh (Asst. Prof) Dr. Mohan Kumar (Asst. Prof) Dr. Raghvendra G. (Asst. Prof) | Comparative Genomics of Horticulture Plant Genetic Resources: Methods and Applications | COH,
Bengaluru | #### 6.4.6. SUPERVISION OF STUDENTS IN PG/PH.D. PROGRAMMES Every student shall have Advisory Committee with a Major Advisor and at least four members among whom two members shall be from outside the major field of specialization. Advisory Committee for Ph.D. student shall consist of at least five members of whom three are from outside the major field of specialization. Programme of Research proposed by the Advisory Committee and approved by the Dean (Post Graduate Studies) will be carried out by the student under the supervision of Advisory Committee. Totally 16 M.Sc. students are passed out from the Department of Biotechnology and Crop Improvement, College of Horticulture, Bengaluru from 2013 to 2018. Research work was carried out by students on the major crops which are grown in this area viz., tomato, cluster bean, brinjal, vegetable soybean, muskmelon, okra etc and research related to ToLCV resistance, fruit quality parameters, variability for morphological traits, mutation etc. are being carried out. Further expressional and functional analysis of transcription factor genes, microRNAs and their cognate genes were studied in various contexts. With respect to the allotment of the students to the PG teacher the major advisor shall not take more than 6 PG students (not more than 04 Ph.D. students) and also the PG teacher shall not be a member of the advisory committee for more than 15 PG students. | Sl.
No. | Year | No. of PG recognised teachers | Intake of students | Student to teacher ratio | |------------|---------|-------------------------------|--------------------|--------------------------| | 1. | 2014-15 | 03 | 03 | 1:1 | | 2. | 2015-16 | 05 | 03 | >1:1 | | 3. | 2016-17 | 07 | 03 | >1:1 | | 4. | 2017-18 | 09 | 01 | >1:1 | | 5. | 2018-19 | 10 | 01 | >1:1 | Actually, Department of Biotechnology and Crop Improvement is running with the shortage of faculty. This is taken care by the deputing teachers from neighbouring campuses and nominating the teachers on contractual basis for taking up of classes of PG and UG as well. Teachers fromneighbouring campuses-College of Horticulture Mysuru and College of Horticulture Kolar, are involved in guiding and teaching the students of M.Sc. and Ph.D. degree programmes. # 6.4.7. FEEDBACK OF STAKEHOLDERS (STUDENTS, PARENTS, INDUSTRIES, EMPLOYERS, FARMERS ETC.) #### Feedback by the graduated students | Sl.no. | Name | Year of completion | Important remarks/feed back | | | | |--------|---------------------------|---|---|--|--|--| | | M.Sc. Passed out students | | | | | | | 1. | Nayana R. S. | Teaching facility is good. Centre for biotechnology is equivalent to state of art laboratory which is best platform for research work | | | | | | 2. | Adiveppa Siddannawar | 2015 | Well-equipped lab facilities for molecular biology. A department with supportive staff | | | | | 3. | Sumuka L. | 2015 | Better exposure and understanding of course through hands on and their utility in farmers point of view. Need to provide additional reading material in library related to course | | | | | 6 | Karthik | 2016 | Course curriculum is designed very well which gives deep insights related to application of biotechnology in crop improvement. Diverse teaching facility is available. | | | | | 7 | Ajay | 2016 | Molecular biology platform is very good, need to develop tissue culture facility | | | | | 8 | Kavya | 2017 | Great exposure in field of biotechnology and its relation with crop improvement from this course. Need to establish competitive exam forum | | | | | 9 | Apoorva K. A. | 2018 | Teaching facility is good, Research areas with which department is working would be beneficial for farming community | | | | | 11 | Shreedhara R. S. | 2018 | Better exposure to biotechnology theory and field work with positive guidance from staff | | | | #### Feedback that demanded immediate action and action taken by the Department | | Students | | | | | |---|---|--|--|--|--| | 1 | Need of advanced software packages and bioinformatics training routines | Software and manuals related to in silico analysis of the genomics data have been installed in the server and being used by the students Advanced statistical programs like Windowstat, Design, Spar1, SPSS have been installed for the benefit of the PG | | | | | | Students | | | | |---|---|---|--|--| | | | students in the centralised facility at college library | | | | 2 | PG Research along with financial assistance | University is providing Rs 2000 financial assistance to all admitted PG students along with 20000 research grant. Most of the students are getting vidyasiri scholarship from state government. Some of the staff research projects are given as PG research along with assistance. | | | | 3 | JRF/SRF to the PhD students | As much as possible the opportunities in the ad hoc projects are given to the PhD students | | | | 4 | Exposure visit to PG students to industry and advanced institutions | Exposure visits PG students are being made to well know institutions and industry in and around Bengaluru. | | | | 5 | Domain personality development and better expression – soft skills | Invited talks by the industry professionals and visits to the biotechnology / plant breeding industries are being done routinely. Further, through peer to peer interactions involving experts, soft kills are being improved amongst the out going students. | | | #### 6.4.8. STUDENT INTAKE AND ATTRITION | Year | Sanctioned seats | Actual intake | Attrition | % Attrition | | | |---------|---------------------------------------|---------------------|------------------|-------------|--|--| | | Doct | oral degree program | me | | | | |] | Degree programme- | Biotechnology and (| Crop Improvement | | | | | 2014-15 | 03 | 03 | 0 | 0 | | | | 2015-16 | 03 | 03 | 2 | 77 | | | | 2016-17 | 03 | 03 | 0 | 0 | | | | | Degree Programme -Plant Biotechnology | | | | | | | 2017-18 | 01 | 01 | 0 | 0 | | | | 2018-19 | 02 | 01 | 0 | 0 | | | **Reasons for the Attrition:**Students who got job in government sector left the studies; in all, two PhD students left studies due to this reason. #### Details of Fellowships/ Scholarships to PG students (2014-15 to 2017-18) | Two of Coholoughin | Ph.D | | | | | |----------------------------|---------|---------|---------|---------|--| | Type of Scholarship | 2014-15 | 2015-16 | 2016-17 | 2017-18 | | | Merit Scholarship | - | - | - | - | | | Student aid fund | - | - | - | - | | | Category I EBL Scholarship | - | - | - | - | | | SC/ST Fellowship | - | | - | | | | GOI Scholarships (SC/ST) | 1 | - | 1 | - | | | Vidyasiri | - | 1 | 1 | 1 | | | Muslim Minority | - | - | 1 | - | | | JRF under Project | 1 | - | - | - | | #### 6.4.9. ICT APPLICATION AND CURRICULA DELIVERY In the college the students were paid the fees and registered through Academic Management System (AMS). All PG correspondences like Plan of Work, Programme of Research and Submission of all PG forms by the students were through AMS. All approvals by the Head of the Department, Chairman and members of the Advisory Committee, Dean (PGS) and Registrar approval through on line by using AMS in order to make paperless transactions. Teaching will be done by using PPT and smart boards. **CeRA and other online e-resources:**CeRA is the ICAR Consortium of e-resources in Agriculture. This covers more than 3000 scholarly journals pertaining to the Agriculture and allied sciences which are available in full text. **E-books:** Library is having access to Springer e-books for the copy right years 2014-16, which covers nearly 1900 books in virtual format with full text availability and at a time 25 users can open an e-book. In addition library has access to 200 Indian e-books. **Krishikosh:** Krishikosh is database of theses submitted to the Agriculture universities and ICAR institutions, The UHS is member for Krishikosh and all the theses submitted to the UHS are being uploaded regularly. **Internet:** The computer laboratory is provided with separate internet link with better speed. Laboratory is equipped with 25 computers with internet access. Web OPAC of the main campus library is made available through EZ-proxy remote access server to access e-resources, CeRA, and Agristat in distant places. #### 6.4.12. #### **CERTIFICATE** I the Dean, College of Horticulture, Bengaluru hereby certify that the information contained in the Section 6.4.1 to 6.4.9 are furnished as per the records available in the college and degree awarding university. Date: March, 2019 College of Horticulture UHS Campus, GKVK Post Bengaluru-560065